

Question Paper Code: X20441

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021

Third Semester
Electronics and Communication Engineering EC 6303 - SIGNALS AND SYSTEMS
(Common to Biomedical Engineering/Medical Electronics Engineering) (Regulations 2013)
(Also Common to PTEC 6303 - Signals and System for B.E. (Part-Time) Second Semester - Electronics and Communication Engineering - (Regulations - 2014))
Time : Three Hours
Maximum : 100 Marks
Answer ALL questions
PART - A
(10×2=20 Marks)

1. If $\delta(t)=\frac{d}{d t} u(t)$, what is $\delta\left(t-t_{0}\right)$. Also justify your answer.
2. Sketch the real part of $\mathrm{e}^{\mathrm{j} 4 \pi \mathrm{t}}$ and determine whether it is a periodic signal.
3. Find the Fourier series coefficients of the signal $\mathrm{x}(\mathrm{t})=\sin ^{2} \omega_{0} \mathrm{t}$.
4. What is the Laplace transform of the unit step function $u(t)$?
5. A causal LTI system satisfies the linear differential equation $5 \frac{d}{d t} y(t)+6 y(t)=2 x(t)$.
Find the frequency response $H(j \omega)$ of the system.
6. What is $\mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t}) * \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)$? Where $*$ represents the convolution operation.
7. Find the Nyquist rate of the signal $x(t)=1+\sin \frac{2 \pi}{5} t$ in Hz .
8. If $x(z)$ is the z-transform of $x[n]$, what is the z-transform of $2 x(n-4)$ in terms of $\mathrm{x}(\mathrm{z})$?
9. Given $\mathrm{x}(\mathrm{n})=\{1,2,-2\}$ and $\mathrm{h}[\mathrm{n}]=\{1,2,2\}$ convolve $\mathrm{x}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$.
10. Given the difference equation representation of a discrete time system. $y[n]=2 y[n-1]+3 y[n-2]+3 x[n]-2 x[n-1]$. Determine whether it is recursive or non-recursive system and justify your answer.
11. a) Plot the following signals
i) $2 u(t)-u(t-1)$.
ii) $\sum_{k=-\infty}^{\infty} \delta(t-2 K)$.
iii) $u[n]-2 u[n+4]$.
iv) $\mathrm{n}^{2}[\delta(\mathrm{n}+2)-\delta(\mathrm{n}-2)]$.
(OR)
b) The input-output relationship of a discrete time system is given by $\mathrm{y}[\mathrm{n}]=\mathrm{x}[\mathrm{n}-1]$ $x[n+1]$. Determine whether the system is Linear, Time Invariant, stable, causal and memoryless.
12. a) Find the Fourier series coefficients of the periodic square wave shown below :

(OR)
b) Find and plot the Fourier transform of the following square pulse.

13. a) Find and sketch $y(t)=x(t) * h(t)$ where * represents convolution operation and $\mathrm{x}(\mathrm{t})=\mathrm{h}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$.
(OR)
b) The output of an unknown LTI system is observed to be $y(t)=\left[e^{-2 t}-e^{-3 t}\right] u(t)$ when the input is $x(t)=\left[e^{-t}-e^{-2 t}\right] u(t)$. Determine $H(j \omega)$ using Fourier transform. Also find $h(t)$.
14. a) State and prove the following properties of Discrete Time Fourier Transform (DTFT).
i) Frequency shifting property.
ii) Convolution property.
iii) Parseval's relation.
(OR)
b) Determine the inverse z-transform of the following $\mathrm{X}(\mathrm{z})$ by the partial fraction expansion method $\mathrm{X}(\mathrm{z})=\frac{\mathrm{z}+2}{2 \mathrm{z}^{2}-7 \mathrm{z}+3}$ with ROC.
i) $|z|>3$
ii) $|z|<1 / 2$
iii) $1 / 2<|z|<3$.
15. a) The input $\mathrm{x}(\mathrm{n})$ and the impulse response $\mathrm{h}[\mathrm{n}]$ of a discrete time LTI system are given by $\mathrm{x}[\mathrm{n}]=\alpha^{\mathrm{n}} \mathrm{u}[\mathrm{n}] \mathrm{h}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]$ for $0<\alpha<1$. Compute the output $\mathrm{y}[\mathrm{n}]$.
(OR)
b) The impulse response of a discrete time LTI system is given by
$\mathrm{h}[\mathrm{n}]=\left[2(1 / 2)^{\mathrm{n}}-(1 / 4)^{\mathrm{n}}\right] \mathrm{u}[\mathrm{n}]$.
i) Determine the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ of the system.
ii) Give the difference equation representation of the system.
iii) Is the system stable and causal ? Justify your answer.
16. a) Consider the interconnection of the discrete time LTI systems shown below :

Using the properties of LTI system, find the overall impulse response h[n], given
$\mathrm{h}_{1}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-1]$
$h_{2}[\mathrm{n}]=\delta[\mathrm{n}-2]$
$h_{3}[n]=u[n-1]$
$h_{4}[\mathrm{n}]=\mathrm{u}[\mathrm{n}+1]$
$h_{5}[n]=r[n]$
$h_{6}[n]=u[n]$
(OR)
b) Given a system with system function $\mathrm{H}(\mathrm{z})=\frac{\mathrm{z}}{\mathrm{z}^{2}+1}$ for ROC $|\mathrm{z}|>1$.
i) Is this a causal system? Justify.
ii) Is the system BIBO stable ? Justify.
iii) Find the difference equation representation of the system.
iv) Is the system linear or non-linear?
v) Is the system shift invariant? Why or why not?

